
ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

Prof. Werner Deitl, Ph.D.

© 2020 by the above. Some rights reserved.

Assertions

2
Assertions

Outline

• This is the first in a sequence of six topics on

– C assertions

– Code development strategies

– Testing

– Commenting your code

– Using print statements for debugging

– Using tracing for debugging

3
Assertions

Outline

• In this tutorial, we will:

– Describe the assert “function”

– Consider its uses

– See how to turn assertions off

4
Assertions

C-style assertions

• Up to this point, we have only executed functions and dealt with all
possible arguments

– For example, the factorial is not defined for negative integers

• We, however, returned zero

– Also, we have arbitrarily executed the alternative body in a
conditional statement

• Can we check to make sure that the conditions are as expected?

5
Assertions

C-style assertions

• An assertion is a “function” that takes a Boolean-valued condition

– If the condition is true, the program continues executing

– If the condition is false, the program terminates with an error

• For example:
int factorial(int n) {

assert(n >= 0);

int result{1};

for (int k{1}; k <= n; ++k) {

result *= k;

}

return result;

}

It is actually a macro, which is

beyond the scope of this course

6
Assertions

C-style assertions

• To use the assert function, you must include the C assert library:
#include <cassert>

• Suppose we have the following program:
#include <iostream>

#include <cassert>

// Function declarations

int main();

int factorial(int n);

// Function definitions

int main() {

 std::cout << factorial(10) << std::endl;

 std::cout << factorial(0) << std::endl;

 std::cout << factorial(-2) << std::endl;

 return 0;

}

Output:
 3628800
 1
 a.out: example.cpp:18:
 int factorial(int):
 Assertion `n >= 0' failed.

7
Assertions

C-style assertions

• Consider this program:
#include <iostream>

#include <cassert>

// Function declarations

int main();

int factorial(int n);

// Function definitions

int main() {

 for (int k{0}; k <= 17; ++k) {

 std::cout << k << "! = "

 << factorial(k) << std::endl;

 }

 return 0;

}

Output:
 0! = 1
 1! = 1
 2! = 2
 3! = 6
 4! = 24
 5! = 120
 6! = 720
 7! = 5040
 8! = 40320
 9! = 362880
 10! = 3628800
 11! = 39916800
 12! = 479001600
 13! = 1932053504
 14! = 1278945280
 15! = 2004310016
 16! = 2004189184
 17! = -288522240

8
Assertions

C-style assertions

• Thus, a better implementation of the factorial function is:
int factorial(int n) {

 assert((n >= 0) && (n <= 12));

 int result{1};

 for (int k{1}; k <= n; ++k) {

 result *= k;

 }

 return result;

}

9
Assertions

Example

• Previously, we introduced a spline

• When plotted next to the sine function,

 it’s a good approximation if

2

2

4
4 3

x
x x x

 

 
− − + + 

 

0
2

x


 

10
Assertions

Example
#define _USE_MATH_DEFINES

#include <cmath>

#include <cassert>

#include <iostream>

// Function declarations

int main();

double my_sin(double x);

int main() {

 std::cout << my_sin(0.5) << std::endl;

 std::cout << std::sin(0.5) << std::endl;

 std::cout << my_sin(1.6) << std::endl;

 return 0;

}

double my_sin(double x) {

 assert((x >= 0.0) && (x <= M_PI_2));

 return 4.0*x*x/(M_PI*M_PI)*(

 x - 4/M_PI*x - M_PI + 3.0

) + x;

}

Output:
 0.471811
 0.479426
 a.out: example.cpp:18:
 double my_sin(double):
 Assertion `(x >= 0.0) && (x <= M_PI_2)' failed.

11
Assertions

Checking conditional statements

• Suppose you have a cascading conditional statement

– It may be useful to ensure that the condition in the complementary
alternative body is what is expected

#include <cassert>

// Function declarations

double tent(double x);

// Function definitions

double tent(double x) {

 if ((x <= -1) || (x >= 1)) {

 return 0.0;

 } else if (x <= 0) {

 return x + 1.0;

 } else {

 assert((x > 0.0) && (x < 1.0));

 return 1.0 - x;

 }

}

12
Assertions

Summary

• Following this lesson, you now:

– Know how to use the assert “function”

– Understand it can be used to:

• The arguments passed to a function are as expected

• Values are as expected when executing code

– Understand that assertions are never needed in this course

• They only help you catch errors in your own code

13
Assertions

References

[1] Wikipedia: https://en.wikipedia.org/wiki/Assert.h

[2] Cplusplus.com

 http://www.cplusplus.com/reference/cassert/

14
Assertions

Acknowledgments

None so far.

15
Assertions

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

16
Assertions

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

	Default Section
	Slide 1: Assertions
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: C-style assertions
	Slide 5: C-style assertions
	Slide 6: C-style assertions
	Slide 7: C-style assertions
	Slide 8: C-style assertions
	Slide 9: Example
	Slide 10: Example
	Slide 11: Checking conditional statements
	Slide 12: Summary
	Slide 13: References
	Slide 14: Acknowledgments
	Slide 15: Colophon
	Slide 16: Disclaimer

